Genomic mismatch scanning: current progress and potential applications.

نویسنده

  • S F Nelson
چکیده

Genomic mismatch scanning (GMS) is a new method of genetic mapping which attempts to purify and map the regions of identity between two complex genomes in a single test. Identical DNA fragments from two genomic sources are enriched in two steps: (i) after reannealing of the two genomes, heterohybrids are purified by using a combination of a restriction methylase and methylation-sensitive endonucleases, (ii) heterohybrids that contain mismatches are nicked in vitro by the E. coli MutHLS mismatch repair system and are eliminated subsequently from the pool, leaving only mismatch-free heterohybrids. The genomic origin of this selected pool of DNA fragments is then mapped in a single hybridization step onto metaphase chromosomes or ordered DNA arrays. The principal advantages of GMS are (i) it approaches the theoretical limit of mapping power and resolution offered by an arbitrarily dense set of completely informative polymorphic markers and (ii) it results in a great increase in the effective number of informative markers without a corresponding increase in the number of individual tests. Thus, it should provide an efficient method for affected-relative-pair linkage mapping and for linkage disequilibrium mapping. In addition, a variation of GMS may allow rapid genomic scanning for regions of homozygosity-by-descent or somatic loss-of-heterozygosity. The feasibility of GMS has been validated in the 15 mb genome of Saccharomyces cerevisiae. This article discusses the principles of GMS, the application to more complex genomes, and the possible uses of GMS.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Carbon membranes for gas separation processes: Recent progress and future perspective

Carbon membrane can be produced using a wide variety of polymer precursor materials via heat treatment process. A general concept route of precursor selection-preparation-modification-performance analysis platform for the carbon membrane has been proposed to promote the development of carbon membrane material for a wide range of application. The current review considers the recent progress of c...

متن کامل

Genomic mismatch scanning identifies human genomic DNA shared identical by descent.

Genomic mismatch scanning (GMS) is a high-throughput, high-resolution identity by descent mapping technique that enriches for genomic DNA fragments that are shared between related individuals. In GMS, DNA heteroduplexes are formed from restriction-digested genomic DNA fragments from two relatives. Mismatch-free DNA heteroduplexes, likely representing DNA shared identical by descent between the ...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

Strategies and Clinical Applications of Next Generation Sequencing

Abstract DNA sequencing is one of the great valuable techniques in molecular biology, which can be used to detect the sequence of nucleotides in a DNA fragment. The high-throughput se­quencing known as Next Generation Sequencing (NGS) revolutionized genomic research and molecular biology; therefore, the whole human genome can be sequenced with a low cost in several days. NGS technology is simi...

متن کامل

An efficient and simple CTAB based method for total genomic DNA isolation from low amounts of aquatic plants leaves with a high level of secondary metabolites

An efficient DNA isolation protocol specifically modified to get pure quality DNA required for molecular studieshas been reported in this paper. Some aquatic plants (Potamogeton spp., Ceratophyllum demersum and Myriophyllum spicatum) were used for the study. The protocol developed will be useful in getting high and pure DNA. Instead of using the available DNA extraction kits, this protocol can ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Electrophoresis

دوره 16 2  شماره 

صفحات  -

تاریخ انتشار 1995